Мендекеев Райымкул Абдымананович, д.т.н., профессор, Институт геомеханики и освоения недр, Национальная Академия Наук, Кыргызская Республика, E-mail: mra58@mail.ru

СОВРЕМЕННЫЕ БЕЗВЗРЫВНЫЕ ТЕХНОЛОГИИ ДЛЯ СОВЕРШЕНСТОВАНИЯ ДОБЫЧИ УГЛЯ НА МЕСТОРОЖДЕНИИ КАРА-КЕЧЕ

Статья посвящена к решению проблем совершенствования добычи угля на крупнейшем угольном месторождении Кара-Кече Кыргызстана путем исследования и внедрения, современных безвзрывных технологий открытой разработки угля.

Ключевые слова: Месторождение Кара-Кече, безвзрывная технология, добычи угля, угольный разрез, разработки горных пород.

Мендекеев Райымкул Абдымананович, т.и.д., профессор, Геомеханика жана жер казынасы институту, Улуттук Илимдер Академиясы, Кыргыз Республикасы

КАРА-КЕЧЕ КЕНИНДЕ КӨМҮР КАЗЫП АЛУУНУ ӨРКҮНДӨТҮҮ ҮЧҮН ЗАМАНБАП ЖАРДЫРУУСУЗ ТЕХНОЛОГИЯЛАР

Макала Кыргызстандын эң ири Кара-Кече көмүр кенинде көмүрдү казып алууну өркүндөтүү көйгөйлөрүн кенди ачык иштетүүнүн заманбап жардыруусуз технологияларын изилдеп ишке киргизүү жолу менен чечүүгө арналган.

Ачкыч сөздөр: Кара-Кече, жардыруусуз технологиялар, көмүрдү казып алуу, көмүр кесүү, тоо тектерин иштетүү.

Mendekeev Raiymkul Abdymananovich, doctor of technical sciences, professor, Institute of Geomechanics and subsoil development, National Academy of Sciences, Kyrgyz Republic

MODERN EXPLOSIVE TECHNOLOGIES FOR IMPROVING COAL MINING AT THE KARA-KECHE FIELD

The article is devoted to solving the problems of improving coal mining at the largest coal deposit Kara-Keche of Kyrgyzstan by researching and introducing modern blast-free technologies for open pit mining.

Key words: Kara-Keche deposit, non-explosive technology, coal mining, coal mine, mining of rocks.

Введение. Люди начали использовать *каменный уголь* (далее *уголь*) как топливо св. 3 тыс. лет до н.э., более масштабная добыча угля началась в период промышленной революции. В мире, в целом, объемы добычи и применения угля стабильно

увеличивались до 80-х годов XX века, затем темпы потребления чуть уменьшились благодаря смены его нефтью и газом, освоением возобновляемых источников энергии.

В начале XXI века на мировом рынке угля тенденции снижения добычи и использования угля сохранились, возникают вопросы можно ли вообще отказаться от угля. Это обусловлено многими факторами, в числе которых главенствуют экологические пробле-мы, а именно, сильные загрязнения и повышение концентрации углекислого газа в атмосфере. Это было также основной темой 26-й Конференции сторон Рамочной конвен-ции ООН об изменении климата (СОР26), проходящей 1-2 ноября 2021г. в Великобритании в г.Глазго, где 105 государств мира из 120 подписали декларацию о сокращении выбросов метана на 30% к 2030 году. Президент КР С.Н.Жапаров выступая на этом саммите отметил, что Кыргызстан поддерживает эти инициативы и ставит своей целью сократить к 2030г. выбросы парниковых газов на 44% (сейчас доля КР в общемировых выбросах ок. 0,03%), а к 2050г. достичь углеродной нейтральности, основываясь на возобновляемые источники энергии, в первую очередь на гидроэнергетику. Отчасти это обусловлено значительным ухудшением атмосферы в наших городах, особенно в г.Бишкек, на прошлой зиме он оказался на первых местах в мире по загрязнениям.

Поэтому ведущие развитые государства, прежде всего страны «Большой семерки», США, Япония принимают курс на снижение добычи и потребления угля.

Однако, для Кыргызской Республики угольная промышленность является вторым по экономической значимости в горнодобывающем секторе после золотодобычи. Общие запасы и прогнозные ресурсы составляют 6,4 млрд. тонн, в т.ч. бурые угли - 5,2 млрд. т, каменные угли - 1,08 млрд. т, коксующиеся угли - 119,6 млн. т. Из общих ресурсов 90,5% являются кондиционными запасами, ок. 80% могут быть отнесены к энергетическим углям (марки БЗ, Д, Г1, 0С2, Т), а 20% - коксующимся (марки Г2, Ж, К, 0С1) [1]. Основная часть угля в КР используется в энергетике, ок. 32% в коммунальном хозяйстве и ок. 13% на производстве стройматериалов. Среди этих ресурсов важное значение имеет месторождение Кара-Кече, которое обеспечивает углем весь северный регион Кыргыз-стана, включая ТЭЦ Бишкека.

На карьере «Кара-Кече» уголь добывается открытым способом. К исследованию горно-геологических особенностей, технологии разработки и комплексного освоения месторождения, включая строительства ТЭС и постройки железной дороги, посвящены труды различных авторов [3,6 и др.]. Но проблемы совершенствования разработки этого уникального месторождения все еще имеются. На месторождении работают ряд компаний, что привело к раздроблению целости карьерного поля месторождения, техно-логическим нарушениям из-за бессистемной разработки.

В связи с этим, исследование мирового передового опыта, современных эффектив-ных безвзрывных технологий для открытой разработки и разработка рекомендаций по их внедрению на месторождении Кара-Кече является актуальной проблемой.

Целью исследований авторов является изучение нынешнего состояния на месторождении Кара-Кече и передового опыта ведущих стран, современного оборудования и безвзрывных технологий для открытой разработки угля, выявление возможностей и разработка рекомендаций их применения на этом крупном карьере КР. В настоящей статье изложены первые результаты таких исследований.

Методы и результаты исследований. Изучены и систематизированы практически все доступные источники, сделан краткий анализ по оборудованию и безвзрывным технологиям открытой разработки угля.

Месторождение Кара-Кече [3,5,6] находится в межгорной впадине (рис.1) Жумгальского района Нарынской области КР, ограниченной с запада и востока реками Токсон-Теке и Кара-Кече, с юга — выходами палеозойских отложений у подножья хребта Молдо-Тоо, с севера — выходами таких же палеозойских отложений. Поверхность района месторождения высокогорная от урочища Кара-Аларча до сая Безымянного, расчленена

Северная часть площади месторождения сложена преобладающими пологими формами с общим понижением с востока на запад, а на юге имеет крутой, скалистый рельеф. В районе месторождения имеются реки Кара-Кече, Бозайгыр, Токсон-Теке, Кара-Аларча, которые берут свое начало с северных склонов хребта Молдо-Тоо. Они наиболее полноводны во время таяния снега — с начала июня до конца июля и после дождей. Река Кара-Кече имеет максимальный расход воды до $3.5 \, \text{м}^3/\text{c}$, минимальный расход составляет $8.8 \, \text{п/c}$. Кара-Кече расположено на высоте $3200 \, \text{м}$ над уровнем моря, климат континентальный, среднегодовая температура изменяется от $+1.3 \, ^{\circ}\text{C}$ до $+7.4 \, ^{\circ}\text{C}$, в июле, августе температура может повышаться от $+1.5 \, ^{\circ}\text{C}$ до $+2.5 \, ^{\circ}\text{C}$. Присутствует почти постоянный ветер со скоростью $1.5 \, ^{\circ}$.

Рис.1. Угольный разрез «Кара-Кече»

Следует отметить, что Кара-Кече относится Кавакскому буроугольному бассейну с протяженностью около 75 км, который включает еще месторождения Кашкасу, Кокмой-нок, Минкуш, Агулак и др. углепроявления.

Месторождение Кара-Кече имеет сложную горно-геологическую структуру, представляет собой альпийскую, преимущественно неотектоническую грабенсинклиналь протяженностью 10 км при ширине 2 км, ограниченную с севера и юга горст-антиклинальными поднятиями; имеет большой диапазон изменчивости, неоднородности строения, механических характеристик породного массива в плане и разрезе [3]. Запасы угля залегают в 2-х пластах: «Основной» с мощностью от 1,15 до 94,22 м и «Сложный» с мощностью от 0,3 до 36,4 м. Пласты в целом имеют угол падения 50-70° на всем протяжении и выходят на поверхность земли.

Относительно запасов угля на «Кара-Кече» встречаются различные данные. По данным Управления геологии КР, общие балансовые запасы угля на 01.01.1996г. составляли 437814 тыс.т, включая 243588 тыс.т для карьера I очереди, а прогнозные

запасы могут достичь до 1,2 млрд. т [5]. По мере расширения исследований и геологоразведоч-ных работ границы открытой разработки месторождения изменялись. Так, если по данным первого подсчета, утвержденных ГКЗ СССР на 1947-49гг. (А.А.Луйк и В.М.Гореловский), запасы угля составляли всего 172500 тыс.т, то уже в 1980-81гг. Севе-ро-Киргизская геологическая экспедиция (рук. Б.И.Ибраимов) дала в ГКЗ уточненные запасы угля по категориям: В - 108974 тыс.т, С $_1$ - 204682 тыс.т; С $_2$ - 125625 тыс.т, всего - 439281 тыс.т, в т.ч. для открытой разработки - 194611 тыс.т; для подземной разработ-ки - 243588 тыс.т, забалансовые подземные запасы - 1082 тыс.т. Таким образом, при добыче угля из Кара-Кече в объеме до 3 млн.т в год для полного удовлетворения внутреннего потребления, а также для экспортных поставок, срок службы карьера может превышать 150 лет.

В соответствии с Межгосударственным ГОСТ 25543-2013 «Угли бурые, каменные и антрациты. Классификация по генетическим и технологическим параметрам» (стандарт СНГ, введен в действие 01.01.2015г.) качество и технологические свойства углей месторождения Кара-Кече относятся к бурым углям с кодовым номером 0472005, что означает: класс 04, категория 7, тип 20, подтип 05, марка Б (бурый), группа 3Б (третий бурый) и подгруппа 3БФ (третий бурый фюзинитовый). В 1988г. классификация углей по маркам была приведена в соответствие с Международной системой кодификации. В ней в фюзинитовую подгруппу относятся угли, которые имеют более 40% фюзинизированных элементов. Последние характеризуются содержанием фюзинизированных элементов, т.е. количеством остатков растений, которые разлагались в присутствии кислорода. В результате такого процесса образуется вещество фюзинит, которое имеет частично сохранившуюся волокнистую и клеточную структуру растений. Основные показатели качества углей месторождения Кара-Кече приведены в табл.1.

Характеристика углей месторождения Кара-Кече

Таблица 1

Пласт	Технические показатели качества						Низшая	Элементный состав, %	
	влага рабочая W _t ^r , %	влага аналит., W ^a ,%	золь- ность, A ^d ,%	выход лету- чих в-в, V ^{daf} ,%0	массовая ДОЛЯ серы, S ^d _t %	удельная теплота сгорания, Q ^{daf} , ккал/кг	теплота сгорания, ккал/кг	углерод, С ^d	водород, H ^d
Основной	26,30- 26,90	9,50- 13,90	6,40- 20,0	28,81- 44,27	0,45- 1,72	6000- 7250	4450- 4650	70,80- 78,64	3,70- 4,54
Сложный	-	9,25- 13,07	10,28- 24,08	35,34- 49,07	0,75- 4,14	6490- 7200	-	68,70- 78,74	4,04- 4,92
Среднее	26,00	11,00	10,00	37,00	1,50	6800	среднее	75,70	4,20

Месторождение Кара-Кече начали осваивать на промышленной основе в октябре 1985г., когда был создан разведочно-эксплуатационный участок по локальному проекту, ПО «Средазуголь» с годовой мощностью 50 тыс.т. Был создан угольный разрез «Ак-Улак», который затем преобразовался в АО «Разрез Ак-Улак», вел открытую добы-чу на участке «Центральный». Производственно-технический потенциал разреза с мо-мента его создания фактически не изменился до 1997г., он поставлял уголь только на местных бытовых потребителей, объем добычи за эти годы составил ок. 500 тыс.т. В 1997-98гг. в соответствии с энергетической программой КР на период до 2010 года были приняты меры для развития горных работ на месторождении. Так, были даны лицензии до июня 2010г. на добычу угля на месторождении Кара-Кече следующим предприятиям:

- 1. ГАО «Разрез Ак-Улак» лицензия на право пользования недрами выдана 23.12.1996г. на восточную часть участка «Центральный», в пределах геологических разрезов 24а—28, протяженностью 570 м, с балансовыми запасами 2475,0 тыс.т до горизонта +2800 м, годовой производственной мощностью разреза 125 тыс.т.
- 2.ОсОО «Демилге Плюс ЛТД» лицензия выдана 25.03.1998г. на восточный фланг участка «Восточный», в пределах геологических разрезов 38–40, протяженностью по простиранию пласта 650 м, с балансовыми запасами 464,5 тыс.т до горизонта +3000 м, с годовой производственной мощностью 10–20 тыс.т.
- 3. ОсОО «Беш-Сары-К» лицензия выдана 10.01.1997г. на западную часть участка «Восточный», в пределах геологических разрезов 34–36, протяженностью по простиранию 695 м, с балансовыми запасами 505,1 тыс.т до горизонта +2900 м, с годовой производственной мощностью 50-200 тыс.т.
- 4. ЗАО «Шарбон» лицензия выдана 01.10.1998г. на участке «Западный», в преде-лах геологических разрезов 6–8, протяженностью 550 м с балансовыми запасами 400 тыс.т до горизонта +2900 м, с годовой производственной мощностью 50,0 тыс.т.
- 5. ОАО «Ак-Жол комур» лицензия выдана 26.12.1997г. на западном фланге участка «Западный», в пределах геологических разрезов 2-5, протяженностью по простиранию пласта 800 м, с балансовыми запасами 1100 тыс.т до горизонта +2850 м, с годовой производственной мощностью 50,0 тыс.т.

В целях дальнейшего развития угледобывающей отрасли Правительством КР было образовано Государственное предприятие «Кыргызкомур» (Пост. ПКР от 2 июня 2012г. №360) путем слияния государственных предприятий «Комур» и «Кара-Кече». ГП «Кыргызкомур» осуществляет государственную политику в угледобывающей отрасли, оказывает содействие предприятиям угольной отрасли КР. Сейчас (2021г.) здесь работают 287 чел., из них 183 чел. трудятся на месторождении Кара-Кече.

В этих же целях в 2012г. был создан консорциум, который в 2016г. был преобразован в Товарищество угледобывающих предприятий Кавакского бассейна для добычи и поставки местных углей на ТЭЦ г.Бишкек и др. потребителям. На 2021г. в состав Товари-щества угледобывающих предприятий по поставкам на ТЭЦ входят 15 фирм: ГП «Кыргызкомур» (лидер Товарищества); ЗАО «Шарбон»; ЗАО «Берекет»; ОсОО «Разрез Бусур-манкул Т»; ОсОО «Ак-Жолкомур»; ОсОО «Жумгалсуукурулуш»; ОсОО «Нарынкомур»; ОсОО «Нарк Тоо»; ОсОО «Но енд Ми Ко»; ОсОО «Пандж Шер»; ОсОО «АГК Тооин-вест»; ОсОО «Демилге»; ОсОО «Тегене»; ОсОО «Фаворит ТМК» и ЗАО «Юнайтед Кол Компани». ГП «Кыргызкомур», как лидер Товарищества, представляет интересы этих фирм в Госорганах и во взаимоотношениях с ТЭЦ г.Бишкек и ОАО «Электрические станции», подписывает договоры, соглашения и др. документы от имени Товарищества.

Объемы добычи угля филиалом «Кара-Кече» ГП «Кыргызкомур» с 2013г. выросли более 9 раз, как видно из диаграммы (рис.2), в 2021г. намечено довести до 600 тыс.т.

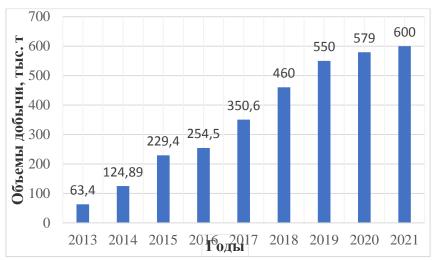


Рис. 2. Динамика добычи угля ГП «Кыргызкомур» на карьере «Кара-Кече»

Практически с начала промышленного освоения и в настоящее время добыча угля на месторождении Кара-Кече ведется открытым буровзрывным способом (БВР) по цикличной технологии. ГП «Кыргызкомур» имеет горнотранспортную технику в следую-щем составе, включая недавно приобретенные за выделенные Правительством средства: экскаватор Hyundai R520LC-9S - 2 ед.; экскаватор ЭКГ 5 - 1 ед.; экскаватор Doosan DX-480LCA-K – 2 ед.; бульдозер ДЭТ-250М2Б1Р1 – 1 ед.; фронтальный погрузчик LW500FN - 3 ед.; фронтальный погрузчик XG951-II - 1 ед.; карьерные самосвал Shacman 8x4 F2000 SX3318DT366C, самосвалы марки Howo – 4 ед.; седельный тягач с полуприцепом – 4 ед.; спецавтомобиль (кузов-фургон) на шасси автомобиля «ЗиЛ» для транспортировки взрывчатых веществ (ВВ). Мошностей этого оборудования все равно не хватает для вы-полнения запланированных горных работ по вскрыше и добыче угля, поэтому предприя-тие арендует дополнительно технику у частных компаний. Сейчас, например, ГП «Кыргызкомур» арендует еще экскаваторов, 30 самосвалов «Хово», 1 погрузчик и 2 бульдозера. Также ГП «Кыргызкомур» объявил тендер на приобретение бурового станка (на 2,2 млн. сомов) и компрессора (2 млн. сомов) для бурения взрывных скважин, т.к. буровзрывные работы выполняют сторонние организации.

сожалению, состояние работ ПО разработке нашего крупнейшего месторождения Кара-Кече очень далеки от современных требований. Поэтому там случаются частые обвалы и оползни бортов на карьере, к счастью, пока не приведшие крупным техногенным катастрофам с человеческими жертвами. Это обусловлено несколькими факто-рами, в числе которых вредная буровзрывная технология, от применения которой все ведущие страны мира уже отказываются, бессистемная добыча ок. 15 различными малыми фирмами на разных участках месторождения с технологическими нарушениями ведения горных работ, очень сложные горногорно-технические условия самого месторождения, слабая геологические оснащенность современным горнотранспортным оборудованием и др. факторы.

В последние годы в мировой практике при открытой разработке угольных месторождений активно начали внедрять безвзрывные технологии.

Поиск для внедрения безвзрывных технологий в угольной промышленности был начат еще в 90-е годы из-за резкого повышения цен. Например, еще в 1994г. затраты горных предприятий СНГ возрастали, в частности в РФ цены ВВ возрастали в 5218 раз по сравнению с периодом конца 80-х годов, т.е. перед распадом СССР, а это не могло не отразиться и на предприятия КР, т.к. в нашей стране ВВ не производятся, они импортируются в основном из РФ. В результате это привело к резкому снижению

эффективности БВР, к росту до 66-75% их доли в общей стоимости энергоресурсов на разработку горных пород. Но несмотря на это и др. недостатки, БВР доминировали при подготовке скальных и полускальных пород к выемке, главным образом из-за отсутствия других конкурентоспособных технологий.

За последние 30 лет появились новые машины и технологии, которые успешно прошли промышленные испытания и внедрения в ряде ведущих угольных и др. горнодо-бывающих предприятий зарубежных стран. Разработка и внедрение безвзрывных технологий для открытой добычи угольных и др. месторождений ведутся по следующим научно-техническим направлениям:

- технологии разработки горных пород комплексом машин (рыхлительно-бульдозерные агрегаты, мощные гидромолоты, бульдозеры и экскаваторы);
- создание и внедрение экскаваторов с ковшами активного действия;
- создание и внедрение машин (комбайнов) послойного фрезерования;
- создание и внедрение поверхностно-активных веществ, растворов, разупрочняющих крепкие горные породы, и технологии обработки ими массива.

Современные машины и оборудования для безвзрывной разработки массива горных пород можно разделить на 2 группы [2] (рис.3). Оборудования I группы – навесные рыхлители и гидромолоты с 1960-х годов применяются на открытых горных работах. Карьерные бульдозеры сейчас обладают очень мощными двигателями, значительными тяговыми усилиями и исполнительными органами активного действия. Гидромолоты также широко применяются на карьерах при разрушении массива крепких вскрышных пород и дроблении негабаритов, они входят в комплект в качестве сменного рабочего оборудования гидравлических экскаваторов.

Серийно выпускаются различные модели гидромолотов с энергией удара 8-10 кДж, с частотой 540 уд/мин и выше. Применение их позволило расширить область безвзрывного разрушения горных пород с прочностью на сжатие до 100–120 МПа и выше, увеличить глубину рыхления в 1,2-1,4 раза, интенсив-ность разрушения — 1,5-2 раза. При определенных условиях и равной производитель-ности, как показывает практика, гидромолоты и бульдозерно-рыхлительные агрегаты или экскаваторы могут снизить до 30% затраты на подготовку пород к выемке по сравнению с БВР. Бульдозерно-рыхлительные агрегаты могут отработать карьерное поле отдельными участками, вести селективную разработку горизонтальных и пологих залежей малой мощности.

Рис. 3. Машины и оборудование для безвзрывной разработки горных пород

Машины II группы включают горные комбайны, одно- и многоковшовых экскаваторов. Одноковшовые бывают 2-х видов: гидравлический экскаватор, имеющий специальный ковш и рыхлитель; механический или гидравлический экскаватор, имеющий ковш активного действия (КАД) с ударными зубьями.

Анализ публикаций показывает, что в ближайшем десятилетии при открытой разработке угольных месторождений в качестве основного оборудования будут применяться одноковшовые экскаваторы с КАД, машины послойного фрезерования (МПФ) и роторные экскаваторы (РЭ). Экскаваторы с КАД позволяют достичь усилия до 3500-4500 кН на лезвии ударного зуба (ширина зуба 170-220 мм), что в десятки раз больше, чем усилие ковша статического действия даже очень мощного экскаватора R-994. В СНГ, в частности в РФ, еще в 1990-е годы в ИГД СО РАН велись исследования по созданию экскаваторов с КАД. Затем в ПО «Уралмаш» (г.Екатеринбург) на базе серийного ЭКГ-5А был создан экскаватор ЭКГ-5В с КАД емкостью 5 м³ и удельной энергией удара на лезвиях зубьев 100 Дж/см. Опытная эксплуатация ЭКГ-5В на карьерах стройматериалов (разработка массива известняка и доломита) и угольных разрезов (крепкие породные прослойки) показала, что он может разрабатывать горные породы I, II и частично III кат. блочности с прочностью на сжатие до $\sigma_1 = 80$ МПа, обеспечить производительность 120-275 м³/ч в зависимости от крепости породы. Было выявлено, что экскаваторы с КАД типа ЭКГ-5В могут быть применены для послойной безвзрывной разработки пород включи-тельно IV кат. с прочностью до 100 МПа.

Фирма Bola La-Detechnik (ФРГ) создала экскаватор типа LB-М, который отличает-ся тем, что благодаря кинематической схеме передачи силы на рукоять экскаватора усилие копания увеличено примерно на 18%. Это позволило машинам типа LB-М превзойти лучших гидравлических выемочно-погрузочных машин по производитель-ности на 8-10%, удельной металлоемкости на 25-30% и по энергопотреблению в 2 раза.

Одним из перспективных направлений при открытой добыче угля является безвзрывная технология с применением роторно-конвейерных комплексов и/или комбай-нов послойного фрезерования. Создание и внедрение высокопроизводительных карьер-ных комбайнов стало большим достижением в развитии технологии открытых горных работ. Различными зарубежными фирмами («Юнит-Риг», «Мак-Нелли», «Фест Альпине», Vermeer и др.) были созданы и прошли промышленные испытания, внедрения ок. 40 моделей машин, различающиеся по конструкции, рабочему органу и принципу действия. Наибольшее применение получили комбайны немецких фирм «Виртген» (WSM, SM - «Surface Miner» - поверхностный комбайн, забойщик, пишут также как СМ) и «Крупп Индустритехник» (KSM - Krupp Surface Miner или КСМ, после объединения фирм Тиссен и Крупп имеет название «Тиссен Крупп Фёрдертехник»). Используются также комбайны модели VASM (Voest Alpine Surface Miner) австрийской фирмы «Фест Альпине» и немецкой фирмы "Ман Такраф" комбайны MTS. Накоплен большой опыт внедрения этих машин, в т.ч. комбайнов Wirtgen при открытой разработке месторожде-ний полезных ископаемых в США, Австралии, Бразилии, Канаде, Боснии и Герцеговине, ЮАР, России, Узбекистане, Казахстане и др. Анализ результатов 30 летней работы по применению безвзрывной и экологически безопасной технологии при добыче различных полезных ископаемых показал, что карьерные комбайны Wirtgen сейчас являются одной из основных горнодобывающих машин. Они обеспечивают [4]:

- выемку пород безвзрывным способом, с прочностью до 120 МПа (при испытаниях и внедрении были случаи выемки до 200-250 МПа) с достаточной производительностью;
- селективную разработку сложно-структурных месторождений (из пачек, пластов и др. перемежаемых структур с пропластками) с наибольшей полнотой и высоким качеством извлечения полезных ископаемых из недр, благодаря регулируемой толщине срезае-мого слоя горной породы с точностью до ± 1 см;
- автономный и быстрый ввод в эксплуатацию выемочно-погрузочного оборудования, исключая необходимость содержания инфраструктуру;
- добычу угля с готовым фракционным (до 8 см) составом, погрузку на конвейер или транспорт, исключая необходимость последующего дробления;
- профилирование поверхности карьера с заданными поперечными и продольными укло-нами, что создает хорошие условия для движения автосамосвалов и др. машин;
- возможность дистанционного управления машиной на крутых уклонах (св. 45°). Более совершенными показали себя модели комбайнов 2200 SM, 2500 SM и 4200 SM с шириной фрезерного барабана от 2,2 до 4,2 м, с глубиной фрезерования от 20 до 83 см и производительностью от 100 до 3000 т/ч и внедрены во многих угольных карьерах.

Учеными КР также ведутся исследования и даются хорошие рекомендации. Одной из них является технологическая схема поточной разработки для месторождения Кара-Кече [3], основанная на способ открытой разработки и призабойный комплекс для его осуществления (Патент №013438 ЕАПВ, Коваленко А.А., Нифадьев В.И.). Основу технологии составляют буровзрывной струг и ленточные конвейеры. Достоинство ее в том, что она может быть хорошо приспособлена для крутых угольных пластов Кара-Кече под углом залегания до 80°. При реальном осуществлении технологии по изобретению на месторождении Кара-Кече может быть внедрена эффективная транспортная система разработки с образованием внешних отвалов, что, к сожалению, сейчас отсутствует.

Таким образом, все перечисленные современные безвзрывные технологии могут быть успешно внедрены на месторождении Кара-Кече и заменить применяемый сейчас буровзрывной способ, организовать поточные технологии добычи с внешними отвалами.

Литература:

- 1. **Асанов, А.А.** Переработка угля основа новых технологий и энергетики Кыргызстана. [Текст] // Бишкек: ИЦ «Текник», 2011. 215 с.
- 2. **Коваленко, А.А.** К обоснованию технологии открытой разработки высокогорного угольного месторождения Кара-Кече. Часть III. Способы и средства разработки месторождения [Текст] // Вестник КРСУ. 2011, Том 11. №11. С.144-150.
- 3. **Лабутин, В.Н.** и др. Опыт и перспективы применения на открытых горных работах безвзрывных технологий разработки массивов горных пород [Текст] // Фунд. и прикл. вопросы горных наук. №1, 2014, Т.1. С.182-190.
- 4. **Пихлер, М.** Комбайны Wirtgen Surface Miner на открытых горных работах: история развития, масштабы применения и перспективы расширения [Текст] / Ю.Б. Панкевич // Горная Промышленность. №2, 2009. С.54-57.
- 5. **Солпуев, Т.** Угольные месторождения Кыргызской Республики: Справочник / [Текст] // Мингео-логии и минеральных ресурсов КР; отв. ред.: Турсунгазиев Б.Т.; ред. коллегия: Зубков В.П. и др. Бишкек: изд-во "Наси", 1996. 511 с.
- 6. **Тажибаев**, **К.Т.** Комплексное освоение буроугольного месторождения Кара-Кече [Текст] / Д.К. Тажибаев // Вестник КРСУ. 2016, Том 16. №1. С.183-186.