Атанаев Токтосун Бегалиевич, к.б.н., профессор, Дайырбек кызы Махабат, магистрант КГУ им. Арабаева

ПРИМЕНЕНИЕ АКТИВИРОВАННОЙ РОДАМИНОМ Ж ХЕМИЛЮМИНЕСЦЕНЦИИ КАК ИНСТРУМЕНТ КОНТРОЛЯ ЛЕЧЕНИЕМ БОЛЬНЫХ В УСЛОВИЯХ ВЫСОКОГОРЬЯ

В статье показаны результаты измерения активированной родамином Ж хемилюминесценции (ХЛ) желточных липопротеидов, плазмы крови и выделенной из нее апо-В содержащих липопротеидов в присутствии ионов двухвалентного железа. Обнаружено, что родамин Ж позволяет регистрировать ХЛ плазмы и сыворотки крови без выделения ЛП крови и проводить контроль за лечением.

Ключевые слова: Желточные липопротеиды, хемилюминесценция, плазма крови, двухвалентное железо.

Атанаев Т.Б. - б.и.к., профессор, Дайырбек ызы Махабат –магистрант, Арабаев атындагы КМУ

БИЙИК ТООЛУУ ШАРТТАГЫ ООРУЛАРДЫ ДАРЫЛОО КӨЗӨМӨЛҮНДӨ РОДАМИН Ж МЕНЕН КҮЧӨТҮЛГӨН ХИМИЯЛЫК НУРДАНУУНУ КОЛДОНУУ

Макалада эки валенттүү темирдин катышуусунда жумуртканын сарысындагы липротеиддердин, жана андан кандын плазмасынын бөлүп алынган апо-В липопротеиддин родамин Ж күчөтүлгөн химиялык нурдануусунун менен жыйынтыктарын өлчөөлөрү көрсөтүлгөн. Родамин Ж кандын плазмасынан липопротеиддерди бөлбөй эле, алардын химиялык нурдануусун каттого боло тургандыгы айкындалган.

Негизги сөздөр. Жумуртканын сарысындагы липопротеиддер, хемилюминесценция, кан плазмасы, экиваленттүү темир.

Atanaev Toktosun Begalievich, Ph.D., professor, Daiyrbek kyzy Mahabat – graduate student KSU after the Arabaev

APPLICATION OF CHEMILUMINESCENCE ACTIVATED BY RODAMINE G AS A TOOL FOR TREATMENT OF PATIENTS WITH HIGHER TREATMENT

The results of the measurement of yolk lipoproteins activated by rhodamine G, blood plasma and apo-B-containing lipoproteins isolated in it in the presence of ferrous ions are shown in the article. It has been found that rhodamine G allows the detection of CL plasma and serum without isolation of the blood plasma and monitoring of treatment.

Key word. Yolklipoproteins, chemiluminescence, blood plasma, ferrous iron.

Введение. Общеизвестно, что и гипоксия, и гипероксия стимулируют процессы перекисного окисления липидов (ПОЛ). Процессы ПОЛ привлекают в настоящее время внимание все большего числа исследователей. Это связано с признанием решающей роли в жизнедеятельности организма биомембран, в структуре которых липиды

занимают важное место. Защиту клеток и межклеточного пространства от свободнорадикального повреждения осуществляет антиоксидантная система, в которую входят вещества ферментной и неферментной природы, способные снижать концентрацию свободных радикалов в организме и тем самым тормозить окислительное поражение биологически важных структур.

По мнению ряда авторов [1,2], гипоксия является не патологическим процессом, а скорее перестройкой метаболизма на более низкий уровень, при этом метаболический ответ различных тканей на действие гипоксического фактора неодинаков.

В исследованиях М.П.Шерстнева [3] было показано, что при гипоксии имеет место изменение свойств различных клеточных и субклеточных структур мембран и главной причиной их повреждения может быть усиление ПОЛ. Изучение процессов перекисного окисления липидов в условиях высокогорья и его значения в патогенезе заболеваний, связанных с нарушением кровообращения, представляет большой научный и практический интерес.

Поэтому целью настоящего исследования явилось изучение физико-химических основ механизма активации $X\Pi$ и применение активированной родамином X хемилюминесценции в присутствии ионов X Y на практике в условиях высокогорья.

Материалы и методы. Объектами исследования являлись, желточные липопротеиды (ЖЛП) и выделенной из крови ее составные части: сыворотка, апо-В содержащие липопротеиды.

Для проведения опытов в модельных условиях кровь получали от практически здоровых людей в возрасте от 18-40 лет, проживающих в условиях низкогорья (г.Бишкек) и высокогорья (Нарынский регион с. Суусамыр, г.Нарын). Кровь брали из локтевой вены и из пальца общепринятым методом натощак. У человека кровь из вены брали обычным способом в количестве 2-5 мл и наливали в сухую стерильную пробирку, через 2 часа отслоившуюся сыворотку декантировали и хранили в холодильнике для дальнейшего исследования. Для приготовления плазмы в кровь добавляли кристаллический гепарин в конечной концентрации 1 мг/мл. Затем центрифугировали в течение 10 мин при 3000g. Полученную плазму или сыворотку при необходимости хранили до выполнения анализа при температуре 4±1 °C в холодильнике не более 5 суток.

Измерение XЛ производили на хемилюминометре типа ИРА-08 с детектором излучения Φ ЭУ-127 в области длин волн 300-600 нм. Отличие от ранее описанных в литературе приборов заключается в том, что отдельные блоки с устаревшей схемотехникой заменены современными интегральными схемами, смонтированными в одном корпусе, а также было модернизировано кюветное отделение хемилюминометра. Измерение хемилюминесценции проводили при температуре $37,0\pm0,5^{\circ}$ С с постоянным перемешиванием механической мешалкой. Необходимая температура автоматически поддерживалась электронным термостатом, собранным на той же панели, что и остальные блоки.

Чувствительность системы и интенсивность XЛ выражали в абсолютных единицах - квант/с· 4π [4,5].Технические данные эталона СФХМ-1 № 7. Удельная интенсивность излучения данной партии стекла ЖС-19 составляет $1,02\cdot10^3$ квант/с·мг· 4π . Масса эталона № 7 равна 591,8 мг. Суммарный световой поток от эталона № 7 составляет $8,58\cdot10^5$ квант/с. 4π .

Статистическую обработку осуществляли на компьютере с помощью специальной программы. Достоверность различий оценивали по t-критерию Стьюдента.

Измерение активированной родамином Ж хемилюминесценции желточных липопротеидов (ЖЛП). Объектами исследования являлись желточные липопротеиды, выделенные из куриных яиц. К яичному желтку добавляли равный объем 0,85 % раствора NaC1 и тщательно перемешивали. Эту маточную суспензию хранили в холодильнике (+4 °C) не более 5 сугок. Непосредственно в день проведения

исследований в нее брали 1,0 мл и разводили в 100 раз дистиллированной водой. Определяли концентрации фосфолипида. В кювету установки помещали 0,25 мг липида, что соответствовало объему суспензии липопротеида (ЛП) от 0,5 до 1,0 мл, добавляли 0,1 мл родамина Ж (РЖ) в различной концентрации. В кювету вводили фосфатный буфер до общего объема 5,0 мл. Для инициации ХЛ вводили 0,5 мл раствора ионов двухвалентного железа.

Измерение хемилюминесценции сыворотки или плазмы крови. Для достижения поставленной цели разработали методику активации ХЛ в присутствии двухвалентного железа и в его отсутствии для оценки физико-химических свойств липопротеидов крови. Апробировали метод активированной ХЛ для анализа крови людей проживающих в условиях высокогорья.

Сыворотку или плазму крови для проведения опытов получали от больных и практически здоровых людей в возрасте 18-40 лет, проживающих в условиях высокогорья (г.Нарын).

Кровь для исследования брали из локтевой вены и из пальца натощак. Эритроциты трижды отмывали физиологическим раствором, центрифугируя при 3000 об/мин. Для приготовления плазмы в кровь добавляли кристаллический гепарин в конечной концентрации 1 мг/мл. Затем кровь центрифугировали в течение 10 мин при 3000g. Полученную плазму или сыворотку при необходимости хранили до выполнения анализа при температуре 4±1 °C в холодильнике не более 5 суток.

К 0,05 мл плазмы (или сыворотки) крови добавляли 0,1 мл активатора (1,0 мМ), а затем 5 мл фосфатного буфера (20мМ). Для инициирования ХЛ вводили 0,5 мл раствора соли двухвалентного железа в концентрации 25 мМ и записывали кривую хемилюминесценции. Регистрировали быструю, медленную вспышки и стационарный уровень ХЛ.

Измерение хемилюминесценции апо-В содержащих липопротеидов. Регистрация XЛ липопротеидов крови является одним из основных методов биофизики, относящимися к фундаментальным разделам естествознания, с помощью которого можно получать прямую информацию о механизмах ПОЛ в биологических системах.

Нами была изучена активированная XЛ апо-В содержащих ЛП в присутствии ионов железа. Известно, что в составе сыворотки (или плазмы) крови имеются разного рода ингибиторы XЛ, суммарный вклад которых могут влиять на результаты измерения. Поэтому в тех случаях, когда необходимо было выяснить окисляемость именно липопротеидов, измеряли XЛ апо-В содержащих липопротеидов в присутствииионов железа. Выделяли апо-В содержащие ЛП из сыворотки крови методом осаждения [6]. Для проведения анализа в кювету с 1,0 мл суспензии апо-В ЛП в физиологическом растворе NaC1 добавляли 4,0 мл фосфатного буфера и 0,1 мл активатора (1 мМ) и инициировали вспышку XЛ введением 0,5 мл 25 мМ раствора соли двухвалентного железа. Основным параметром, по которому оценивали интенсивность XЛ апо-В ЛП, являлась амплитуда медленной вспышки. С помощью этого показателя оценивают окисляемость апо-В липопротеидов крови [7].

Результаты исследования. Изучали возможность активации хемилюминесценции ЖЛП в присутствии ионов Fe^{2+} с помощью РЖ в фосфатном буфере. В кювету помещали 0,5 мл суспензии ЖЛП в количестве 10 мг по фосфолипиду, 0,05 мл РЖ (0,5мМ) доводили объем до 5 мл фосфатным буфером. Для инициирования ХЛ вводили 0,5 мл раствора ионов Fe^{2+} в конечной концентрации 5мМ.

Была изучена зависимость кинетики XЛ липопротеидов желтка от концентрации РЖ в присутствии соли двухвалентного железа. В кювету помещали 0,5 мл суспензии ЛП желтка в количестве 20 мг по фосфолипиду добавляли 0,1 мл родамина Ж различной концентрации и доводили объем смеси до 5 мл трис-НСІ буфером и вводили

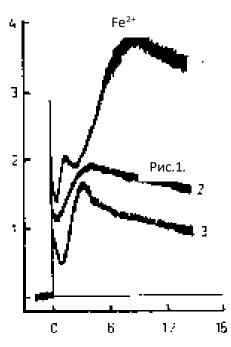
через трубку для инициирования XЛ 0,5 мл раствора соли Fe^{2+} в конечной концентрации 100 мкМ.

Получено, что с увеличением концентрации активатора, значительно увеличивается интенсивность медленной вспышки, и в меньшей степени увеличивается стационарный уровень ХЛ. Увеличение концентрации РЖ, усиливая интенсивность ХЛ, не оказывает существенного влияния на кинетику хемилюминесценции.

Изучали влияние РЖ на разных стадиях развития ХЛ ЖЛП в присутствии ионов двухвалентного железа. Для этого сначала измеряли ХЛ ЖЛП без активатора, затем в последующих опытах на разных стадиях развития ХЛ через определенное время, равное 1,3,6,8, и 12 мин., закрывали шторку и вводили 0,1 мл активатор, открыли шторку и наблюдали изменение медленной вспышки хемилюминесценции. Показано, что кинетика ХЛ ЛП в присутствии активатора отличается от кинетики ХЛ в его отсутствии тем, что резко увеличивается быстрая вспышка и появляется промежугочная вспышка ХЛ. Увеличение амплитуды быстрой вспышки, по-видимому, связано с наличием в системе гидроперекисей липидов. Появление промежуточной вспышки, вероятнее всего, связано с наличием в системе активных форм кислорода, в частности, синглетного кислорода, которая подавляется гистидином.

На стандартной хемилюминесцентной системе изучали влияние гистидина на XЛ в присутствии ионов Fe^2 . Перехватчик добавляли до введения ионов Fe^2 При больших концентрациях гистидин тушил быструю и медленную вспышки XЛ. В то же время гистидин оставлял без изменения стационарную XЛ. Таким образом, по-видимому, активация родамином Ж связана в некоторой степени с взаимодействием PЖ с синглетным кислородом.

Добавление родамина Ж на разных стадиях ХЛ приводит в целом к одному и тому же результату: по максимуму ХЛ равна во всех случаях. Различие в кинетике связано с появлением или исчезновением промежуточной вспышки. Из серии опытов получено, что промежуточная вспышка наблюдается только в начале развития ХЛ, а именно до 3-х минут после введения ионов Fe²⁺. Во всех остальных опытах ее не удалось наблюдать. В отсутствии активатора за это время, по-видимому, протекают окислительные процессы, которые не сопровождаются свечением, но которые подготавливают последующие хемилюминесцентные реакции. Тот факт, что РЖ усиливает ХЛ на разных стадиях развития ПОЛ в одинаковой степени подтверждает, что данный активатор в процессе химических превращений не теряет свой способности активировать хемилюминесценции.


Полученные результаты показывают, что в присутствии РЖ в наибольшей степени активируются быстрая и медленная вспышки, а стационарный уровень ХЛ увеличивается всего в 2 раза. Обращает на себя тот факт, что в отсутствие активатора в фосфатном буфере медленная вспышка сливается со стационарной ХЛ. В присутствии РЖ можно наблюдать интенсивную медленную вспышку ХЛ. Таким образом, с помощью РЖ можно выделить стадию медленной вспышки хемилюминесценции ЖЛП, существенно не меняя уровень стационарной ХЛ.

Изучали зависимость величины амплитуды быстрой и медленной вспышек хемилюминесценции ЖЛП от концентрации ЛП желтка при постоянной концентрации РЖ. Показано, что с увеличением концентрации ЛП желтка в изученном интервале линейно растут амплитуды быстрой и медленной вспышек ХЛ.

Влияние кислорода и перемешивания образца на хемилюминесценцию в присутствии родамина Ж. Изучалось влияние кислорода на интенсивность ХЛ желточных липопротеидов в присутствии ионов Fe^{2+} . Показано, что уменьшение концентрации кислорода от 25×10^{-5} до 5×10^{-5} М уровень стационарной ХЛ оставался практически неизменным. Резкое уменьшение ХЛ наблюдалось только в пределах остаточной концентрации кислорода от 5 до (1-2) 10^{-5} М. Это свидетельствует о том,

что кислород является лимитирующим в процессе перекисного окисления и ХЛ лишь при очень низких его концентрациях, и что наблюдали другие авторы.

Активированная родамином Ж хемилюминесценция плазмы крови. В этом аспекте разработанная нами активированная родамином Ж хемилюминесценции в присутствии Fe²⁺ [8] была более перспективной. И ее использовали для обследования больных с нарушением в составе ЛП крови. Измерение ХЛ проводилось многократно до и после лечения. Для измерения ХЛ в присутствии РЖ использовали 50 мкл сыворотки крови. Регистрировали быструю, медленную вспышки и стационарный уровень ХЛ.

Как видно на рисунке, без активатора не обнаружено различия между донором и больным, а в прису 1 и РЖ различить. Ha рис.1 показана типичная кинетика активированная родамином хемилюминесценции плазмы крови больных в присутствии ионов двухвалентного железа. Цифры у кривых означают: 1- больной с повышенной концентрацией липидов; кривая для практически здоровых людей; 3после лечения. Стрелка указывает момент введения ионов Fe²⁺. Как видно из кривых, данный метод позволяет контролировать за эффективностью клинических мероприятий. образом, родамин Ж позволяет регистрировать ХЛ плазмы и сыворотки крови без выделения ЛП крови И проводить контроль за лечением.

Литература:

- 1. **Шестаков, В.А.** Хемилюминесценция плазмы крови в присутствии перекиси водорода [Текст] / Бойчевская Н.О., Шерстнев М.П. // Вопр. мед. химии, 1979а, т.25, №2, 132-137.
- 2. **Шестаков, В.А.** Сверхслабое свечение плазмы крови при экспериментальной эмболии магистральных артерий конечностей. [Текст] / Истомин Н.П., Нуцубидзе О.Б., Шерстнев М.П. // Бюлл. экспер. биол., 1979б, т.88, N9, 304-306.
- 3. **Шерстнев, М.П.** Значение хемилюминесцентных исследований в клинической медицине [Текст] Вопросы хемилюминесценции. 1991б.- т., 2, № 1.- С. 5-10.
- 4. **Владимиров, Ю.А.,** Квантометрическая характеристика хемилюминесценции биологических объектов // [Текст] / Шерстнев М. П., Пирязев А. П., Беляков В. А. // Журн. прикл. спектроскопии. 1989б.-Т. 50, № 2.-С. 341.
- 5. **Шерстнев, М.П.,** Атанаев Система регистрации хемилюминесценции ИФХМВ-1. [Текст] / Т. Б., Владимиров Ю. А.// Мед. техника. 1988.-№ 4.- С. 25-28.
- 6. **Лопухин, Ю.М.** Регистрация хемилюминесцепции составных частей сыворотки крови в присутствии двухвалентного железа. // [Текст] / Ю.А., Владимиров Молоденков М.Н., Г.И. Клебанов., В.И., Сергиенко и др.// Бюлл. экспер. биол.-1983.- Т. 95, №2.- С. 61-63.
- 7. **Vladimirov Y.A.,** Biophysical chemiluminescent analysis. / [Текст] Sov.Med.Rev.B.Physicochemical Aspects of Med., 1991, v.2, 1-43.
- 8. **Vladimirov**, **Y.A.** Enhancement of chemiluminescece associated with lipid peroxidation by rhodamine dyes. . / [Tekct] Y.A.Vladimirov, T.B.Atanaev, M.P. // Sherstnev Free radical biology & Medicine, (USA) 1992, vol 12, P. 43-52.