ОПРЕДЕЛЕНИЕ ЭНЕРГИИ АКТИВАЦИИ ОКСАЛАТНЕОДИМА(РЗЭ) МЕТОДОМ ДИФФЕРЕНЦИАЛЬНО ТЕРМИЧЕСКОГО АНАЛИЗА В ПРОГРАММЕ DELPHI

Приведены значения и актуальность математической модели для энергии активации оксалата РЗЭ неодима. Для проведения расчета необходимы данные и графика зависимости от температуры, эти данные и методика расчета приведены в работе.

Ключевые слова: металлы, научно-техническое развитие, редкоземельное сырье, энергия.

DETERMINATION OF THE ACTIVATION ENERGY NEODYMIUM OXALATE (REE) BY DIFFERENTIAL THERMAL ANALYSIS IN THE PROGRAM DELPHI.

Values and an urgency of a mathematical model for energy of activation oxalates of rare earth elements are resulted. The data is necessary for calculation carrying out and a drawing of a relation to temperature, this data and a design procedure are resulted in operation.

Keywords: metals, scientific and technological development, rare earth raw materials, energy.

Редкоземельные металлы обладают уникальными свойствами, благодаря чему используются в различных сферах современной промышленности, особенно в наукоемких. Уровень их применения является показателем научно-технического развития той или иной отрасли, способствует экономии минерального сырья, улучшению экологической обстановки, обеспечению национальной безопасности. В то же время редкоземельное минеральное сырье относится к числу не восполняемых в природных условиях ресурсов, его запасы ограничены [1].

Мировой спрос на редкоземельную (далее РЗЭ) продукцию в последние 20 лет развивается по возрастающему тренду. Экспорт РЗЭ в составе высокотехнологичных продуктов и изделий наиболее выгоден и именно он обеспечивает развитым государствам максимальную прибыль.

Устойчивый рост потребности рынков редкоземельном сырье наблюдался на протяжении всей второй половины XX века, с большой долей вероятности он продолжится и в XXI веке. Ассортимент редкоземельной продукции будет расширяться, об этом говорит динамика мирового потребления редкоземельной продукции. Такие тенденции связаны, прежде всего, с усовершенствованием технологий практически во всех отраслях промышленности и использованием редкоземельной продукции в создании новых высокотехнологичных материалов, товаров и изделий с уникальными характеристиками [1].

Особенность процесса плазменной обработки оксалатов РЗЭ, как и ряда других процессов, состоит в том, что пока неизвестна кинетика высокотемпературного разложения. Исходя из этого, как предложено[2], можно определить степень термического разложения по рассчитанным затратам тепла на стадии нагрева и термического разложения оксалата РЗЭ.В связи с отсутствием данных для термодинамического расчета тепловой эффект термического разложения может быть определен как энергия активации реакции. В этом случае, как показано в работах [3,4].понятия энергия активации и теплота реакции рассматриваются как совершенно равнозначные, предполагая, что процессы дегидратации и разложения являются без барьерными и величины энергии активации их равны энтальпии реакции. Как известно, расчет энергии активации связан с определением

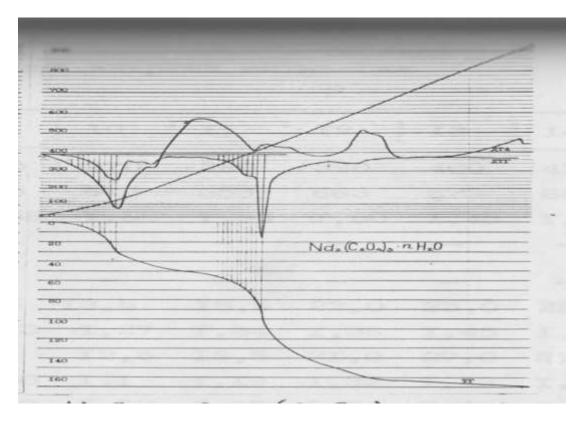
избыточного количества энергии, котором должна обладать молекула в момент столкновения, чтобы началась химическая реакция. Подобные исследования весьма трудоемки и требует высокой точности эксперимента. В последнее время для определения энергии активации применяются косвенные методы, которые по своей точности не уступают прямым расчетным методам.[5]. в частности, для расчёта энергии активации реакций типа $A_{\text{тв}} = B_{\text{тв}} + C_{\text{г}}$ могут быть использованы кривые дифференциально термического (ДТА), термогравиметрического ТГ и дифференциально термогравиметрического(ДТГ) методом анализа.

Энергия активации по кривой дифференциально-термического анализа может быть рассчитана из уравнения $ln\Delta t = C' - \frac{E_a}{RT}$ где Δt - изменение темпертуры (0 C) соответствующее глубине пика ДТА при данной температуре. Вследствие того, что между величиной пика и температурой существует пропорциональная зависимость, глубина пика выражается в миллиметра; E_a -энергия активации (кДж./моль), R-универсальная газовая постоянная (дЖ/мольК), C- константа. По кривой термогравиметрического анализа энергия активации рассчитывается по формуле: $lnm - 2lnT = A_0 - \frac{E_a}{RT}$, где Δt - уменьшение массы вещества. Определяемое по $T\Gamma$ - кривой и обычно выражаемое в процентах или мг. Вследствие того, что между уменьшением массы вещества и глубиной $T\Gamma$ -кривой существует пропорциональная зависимость, глубина $T\Gamma$ -кривой выражается в мм. Глубина $T\Gamma$ - кривой при температуре t^0 C определяется перпендикуляром опущенным из точки на $T\Gamma$ -кривой, соответствующей проходящая через точку нулевого превращения паралельно оси абссиц.

 A_0 -константа.[6]. С учетом данных дифференциального термогравиметрического анализа можно вычислить энергию активации по уравнению: $ln\vartheta_m = B - \frac{E_a}{RT}$ где ϑ_m -скорость уменьшения массы исходного вещества $(M\Gamma/MUH$ или $M\Gamma/$ 0 C). Существенная пропорциональная зависимость между скоростью уменьшения массы вещества и глубиной ДТГ –кривой позволяет для расчёта выразить глубину ДТГ – кривой в мм. Глубина ДТГ – кривой при температуре ${
m t}^0$ Спредставляет собой перпендикуляр. Опущенный из точки на ДТГ кривой, соответствующей температуре t^0 С, на базисную линию; В-константа; Тв градусах Кельвина ($T = t^0C + 273^0C$). Для получения более результатов необходимо соблюдать следующее условия: линии ДТА и ДТГ после окончания фазовых превращений должны выходить на базисную линию, недопустимо наложение на эффект, применяемый для расчета энергии активации других термических эффектов: расчет необходимо проводить по начальной ветви эффекта на участке, отвечающем степени превращения $K_p < 0.4 \div 0.5$. на приведенной программе Delphiнашел отражение процесс диссоциации оксалата неодима. 1987 году исследовали на программе Фортран эта изображена на дериватограмме[6].продукции Киргизского горно-металлургического комбината. Расчет проводили в интервале температур $80-170^{0}$ C, что соответствует процессу дегидратации, и в интервале температур 240° - 340° C, что соответствует термическому разложению оксалата РЗЭ со степенью превращения Кр< 0,35.

Последовательность расчета показано в таблице. $Nd_2(C_2O_4)_3*nH_2O[6]$.

Таблица 1 Энергия активация оксалата РЗЭ определенная по данным дифференциально-термического анализа.


Соединения	Е(ДТА)	Е(ДТГ)	Ε(ΤΓ)	Погрешность
	кДж/моль	кДж/моль	кДж/моль	
Оксалат	471,77	665,28	672,77	±10
неодима				

Полученные результаты определения энергии активации оксалатовс РЗЭ удовлетворительно согласуется между собой [5,6]

Это температура взята в качестве исходной точки. Далее через определенные интервалы температур (в частности, в данном случае через 100^{0} C) на кривой T отмечается ряд точек. В данном примере отмечено десять точек. Последняя точка соответствует температуре произвольно взятой для полного удаления влаги. С температурной кривой точки переносятся на три кривые: ДТГ, ДТА и ТГ;

- 2. Далее переводятся t^0 Св $K(T=t^0C+273)$ и определяется для каждой точки величина $I/T*10^{-3}$:
- 3. Находятся величины, необходимые для расчета энергии активации по кривым ДТА, ДТГ и ТГ :
 - а) Δt . υ_m и тзамеряются и выражаются в мм.
- б) С помощью микрокалькулятора определяются $ln\Delta t. lg\vartheta_m. lgmu\ 2lgT$, а также разность (lgm-2lgT) и по этим данным для каждой кривой строятся графики в координатах $lg\Delta t \sim \frac{l}{T}. lg\vartheta_m \sim \frac{l}{T}$, lgm-2lgT $\sim \frac{l}{T}$ график представляет собой прямую линию, тангес угла наклона которой показывает величину энергии активации.

В частности, процессов дегидратации и термического разложения оксалата неодима. [6,7] Расчет энергии активации оксалатов РЗЭ выполнен по данным дифференциально-термического (ДТА), термогравиметрического (ТГ) и дифференциально-термогравиметрического (ДТГ) анализов, полученных на дериватографеПаулик-Эрдей. При этом учитывается как, отмечается в работе [8]. что измерение значения энергии активации даже для стадии дегидратации одних и тех же соединений, по данным различных авторов, отличаются друг от друга в 3-4 раза.

По результатам определения энергии активации оксалатов неодима с учетом экстраполяции построен график для высоких температур оксалатов неодима в виде зависимости lgE_a от lgT на программе «Delphi» показано на рисунке (рис.1).Зеленая линия обозначает анализ (ДТА) красная линия обозначает дифференциально термогравиметрического анализа (ДТГ) к этому линию слитно располагается пунктирная линия это термогравиметрический анализ (ТГ).

Расчетные	1	2	3	4	5	6	7	8	9	10
величины										
t ⁰ C	120	140	160	220	240	380	400	420	440	460
T.K	393	413	433	493	513	653	673	693	713	733
I/T 10 ⁻³	2.54	2.42	2.31	2.03	1.95	1.53	1.48	1.44	1.40	1.36
	41	50	58	20	33	-	-	_	-	-
	1.61	1.7	1.76	1.30	1.52	-	-	-	-	-
$ATF^{\{\vartheta_mMM}_{\log \vartheta_m}$	12	18	20	7	13	36	45	-	-	-
	1.08	1.25	1.30	0.84	1.11	1.56	1.65	-	-	-
$T\Gamma$ $\begin{cases} m, MM \\ \log m \end{cases}$ $\begin{cases} 2 \log T \\ \log m - 2 \log T \end{cases}$	10	18	28	38	44	56	67	78	90	100
	1.0	1.28	1.45	1.58	1.64	1.75	1.83	1.89	1.95	2.00
	5.19	5.23	5.27	5.39	5.42	5.63	5.66	5.68	5.70	5.73
	-	-	-	-	-	-	-	-	-3.70	-
	4.18	3,95	3.83	3,80	3,77	3,88	3.88	3.79		3,73

Из программы «Delphi» можно сделать вывод, что энергии активации зависить от температурына сколько выше температура, на столько энергии активации ближе к единицу.

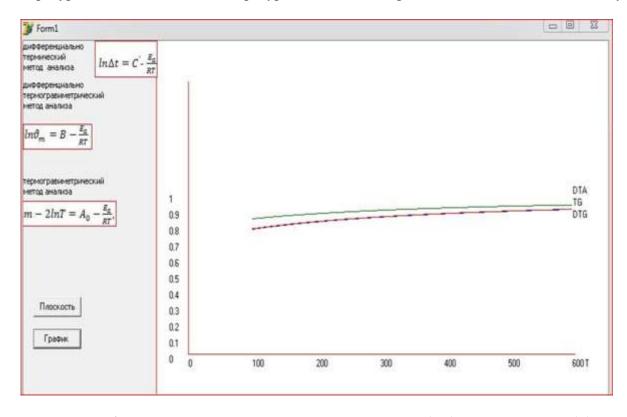


Рис.1. График зависимости энергии активации неодима (E_{ak}) от температуры (T)

Литература:

- 1. Горшков В.С., Тимашов В.А. Савельев В.А. Методы физико-химического анализа вяжущих веществ. –М.: Высшая школа,1981г
- 2. Иванов В.В., Габуда С.П., Мишин Е.Н. и др.Один случай задачи о кривых веса и дериватограммах сушки с десорбцией много фракционного водного адсорбента. ИЖФ,1972
- 3. Колосовкая Е.А Термический анализ десорбции капиллярно-пористых тел. Красноярск, 1980г

- 4. Логвиненко В.А. Термический анализ координационных соединений и кастратов. Новосибирск: Наука, Сиб.отд.1982г
- 5. Страшко А.Н. Переработка шлифотходов производства высокоэнергетических магнитов Nd- f- D сернокислотнооксалатным способам.- Томск: изд-во ТПУ, 2011г.
- 6. Татыбеков А.Т.,Ысакава Ч.А., Сейталиева С.Ч. Создание математической модели процессов разложения оксалатов редкоземельных элементов (РЗЭ) в плазменном реакторе. Бишкек -2007г. Известия КГТУ им. И.Раззакова №12. 269-270 стр.
- 7. Татыбеков А.Т.Плазмохимическая технология получения оксидов иттрия, церия и неодима. Фрунзе 1987.