УДК 621.311.: 681.513

A.T. Абдуллаева, Р.Н. Абдылдаев Ст.преп.ОшТУ, к.т.н.,доцент ОшТУ A.T. Abdullayev, R.N. Abdyldaev Senior teacher OshTU, c.t.s., associate prof. OshTU

ОРГАНИЗАЦИЯ СИТУАЦИОННОГО УПРАВЛЕНИЯ РЕЖИМОВ ЭЛЕКТРИЧЕСКИХ СЕТЕЙ

Предлагается алгоритм подготовки информации для решения поставленных задач при управлении режимами электрических сетей.

Ключевые слова: Электрические сети, ситуационная модель, двоичная матрица, блоксхема.

ORGANIZATION OF SITUATIONAL MANAGEMENT MODES OF ELECTRICAL NETWORKS

An algorithm for the preparation of information for the task in the management of electrical networks modes.

Keywords: Electrical networks, situational model, binary matrix, block diagram.

При создании модели объекта требуется разработка эффективных алгоритмических методов решения задачи, которые позволят учесть организацию данных в информационной базе и обеспечат минимальный расход времени формирования и анализа ситуационных информационной модели сети (СИМС). Алгоритмическое обеспечение ситуационного управления должно иметь модульную структуру, содержать блоки, реализующие расчет потерь энергии, мощности и качества электроэнергии. Алгоритм должен позволять формировать заданную (по ретроспективным данным) или любую планируемую последовательность расчетных СИМС.

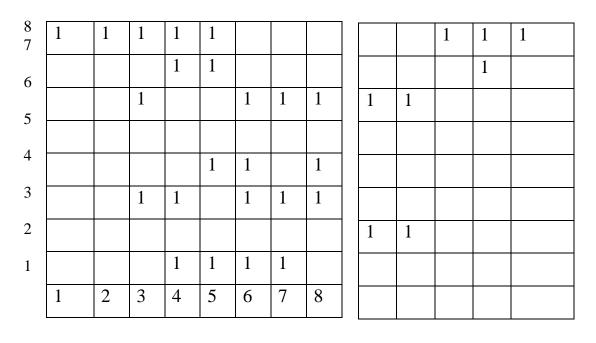
Постановка задачи. Основу метода составляет способ формирования матрицы ситуационных состояний сети, располагая базой данных изменений структуры сети, можно приступить к формированию ситуационной модели (СМ) управления сети.

Ситуационная модель представляется двоичной матрицей (рис.1). Строки матрицы представляют расчетный период T_p , разделенный на kравных f —х интервалов ил столбцов. Величина интервала T_p принимается в зависимости от решаемой задачи. Для оценки фактической оптимизации, выполняемой с заблаговременностью в 1 год, продолжительность T_p равна 365 суткам, а t_f -1 суткам. Каждый разряд столбца матрицы соответствует порядковому номеру одного из mg- х участков дерева сети \mathbf{y}_g , отключавшихся, или отключения которых планируется в течении T_p . Порядок матрицы равен (m x k).

При построении модели ситуационного управления упорядочивается нумерация участков сети $Y_{\rm g}$, отключавшихся в течение $T_{\rm p}$. Затем поочередно для каждого g-го $Y_{\rm g}$ просматриваются все f - е столбцы матрицы и записываются единицы в g-е разряды тех столбцов, номера которых соответствуют упорядоченным номерам $Y_{\rm g}$. Каждая i-я ситуация может включать более одного столбца матрицы.

При определении границ ситуаций, образованных при одновременном отключении множества V_g и нахождении величин t_f , производится попарное сравнение столбцов, рассматриваемых слева направо.

По количеству совпадений определяется t_i и затем расшифровываются наименования участков, отключенных в i- ой ситуации. Затем производится преобразование содержимого


базисной информационной модели сети в СИМС с учетомі- го сочетания отключенных участков $\sum V_{\rm gi}$, т.е. создается определенная последовательность СИМС $_{\rm i}$. После формирования всех СИМС $_{\rm i}$ происходит запоминание их в памяти ЭВМ в порядке следования k временных интервалов за расчетный период $T_{\rm p.}$

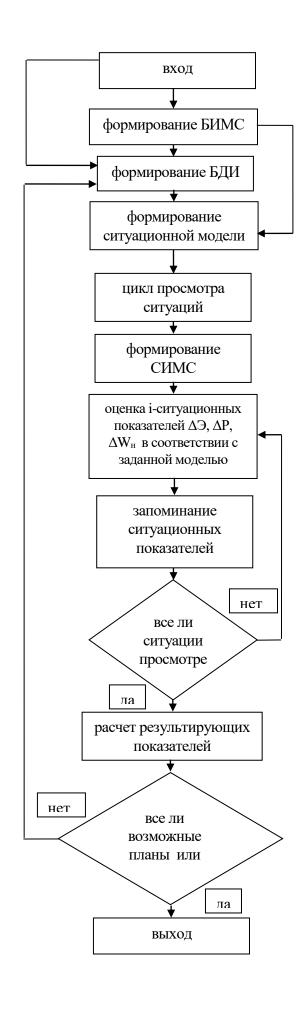
Общая блок-схема алгоритма реализации ситуационного моделирования, ориентированная на использовании информационной системы приведена на рис. 2.

Алгоритм моделирования ситуационных состояний структуры PC имеет модульную структуру и содержит блоки реализации ситуационного моделирования и блоки реализации моделей потерь мощности и энергии, качества напряжения.

Приведем результаты экспериментальных расчетов по моделированию ситуационных состояний распределительной сети 10 кВ и оптимизации схем по потерям мощности и энергии [1,2].

Оптимизацию схемы по потерям мощности и энергии выполним на примере участка схемы РС 10 кВ. В схеме активные сопротивления всех КЛ примем равными 1 Ом, ограничений по пропускной способности линии нет. Графики нагрузок всех трансформаторных подстанций (ТП) задаются 24-х часовыми суточными значениями, средней и максимальной нагрузками. От каждой ТП получают питание однородные потребители с одинаковым коэффициентом мощности.

k-1,2,3,4,....365 (интервалы) Tp, дни g=1,2,3,...8 i, ситуации


Рис. 1. Матрица ситуационных состояний распределительной сети.

Моделирование ситуационных состояний распределительной сети 10 кB проводилось поочередным изменением схем электроснабжения с последующим ее восстановлением. Изменения схемы формируются отклонением линий, ТП, ИП. Оптимизация конфигурации РС для каждой ситуации выполнились методом дискретного покоординатного спуска. Управляющим воздействием служило положение точки размыкания в резервируемой схеме электроснабжения. Изменения ситуационных значений ΔP_i приведем на рис. 3.

Согласно, приведенным результатам можно сделать вывод о необходимости детализации расчетной схемы распределительных сетей в отдельных ситуациях, и о целесообразности выполнения локальной оптимизации для длительных ситуаций по

критериям ΔP , $\Delta \Theta$, т.к. эффект снижения оптимизируемого показателя для выбранного участка схемы распределительных сетей составило около 35%.

Эффективность предлагаемых мероприятий по оценке и оптимизации уровня ΔP , $\Delta \Theta$ для каждой отдельной ситуации в настоящем периоде управления режимом распределительных сетей системы электроснабжения и за прошлый отчетный период во многом определяется достоверностью и точностью используемой информации об электрических нагрузках, и , в частности, суточных, сезонных графиков нагрузок отдельных потребителей.

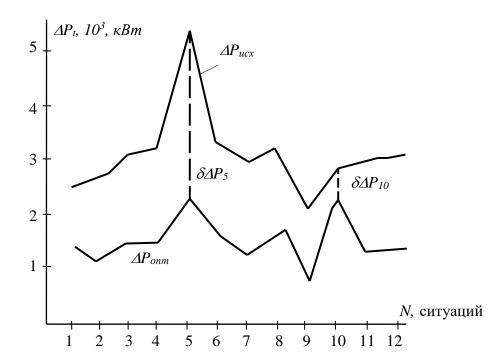


Рис. 3. Изменения ситуационных значений потерь активной мощности.

Внедрение в эксплуатацию рекомендуемых оптимальных схем распределительных сетейпозволило бы снизить ΔP в среднем на 10-25 %. Оценка фактических результатов оптимизации конфигурации распределительных сетей выполнена на основе ситуационного моделирования с учетом нарушений нормальной схемы электроснабжения за ретроспективный период.

Таким образом, применение ситуационного моделирования режимов электрических сетей показывает об эффективности предлагаемой ситуационной информационной модели сети. Потери мощности ΔP по распределительным сетям для расчетного часа сократились до 30%. Суммарные потери энергии для рассматриваемого участка уменьшились на 14 %.

Выволы:

1.Составлена общая блок-схема алгоритма реализации ситуационного моделирования, ориентированная на использовании информационной системы, позволяющая выполнять режимные расчеты на ЭВМ с учетом эксплуатационной динамики конфигурации распределительной сети.

2. Получены экспериментальные данные по результатам оптимизации потерь мощности и электроэнергии в распределительных сетях. Внедрение методики ситуационного моделирования позволяет получить оптимальные схемы и рекомендовать их для эксплуатации.

Литература:

- 1. Апышев, Д.А. Применение ситуационного управления в электроэнергетике[Текст]/Д.А. Апышев. Наука и новая технология. Бишкек, 2006. №1.
- 2. Абдылдаев, Р.Н. Управление распределительными сетями с использованием ситуационного моделирования [Текст] / Р.Н. Абдылдаев. II международная конференция «Проблемы управления и информатики». Бишкек, 2007. с.308-312.